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ABSTRACT
We present results from an experiment designed to better understand the mechanism by which ocean currents and winds control flotsam
drift. The experiment consisted of deploying in the Florida Current and subsequent satellite tracking of specially designed drifting buoys of
various sizes, buoyancies, and shapes. We explain the differences in the trajectories described by the special drifters as a result of their inertia,
primarily buoyancy, which constrains the ability of the drifters to adapt their velocities to instantaneous changes in the ocean current and
wind that define the carrying flow field. Our explanation of the observed behavior follows from the application of a recently proposed Maxey–
Riley theory for the motion of finite-sized particles floating on the ocean surface. The nature of the carrying flow and the domain of validity of
the theory are clarified, and a closure proposal is made to fully determine its parameters in terms of the carrying fluid system properties and
inertial particle characteristics.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139045., s

I. INTRODUCTION

The assessment of the motion of floating matter in the ocean is
of importance for a number of key reasons. These range from
improving search-and-rescue operations at sea1,2 to better under-
standing the drift of the flotsam of different nature including
macroalgae such as Sargassum,3,4 plastic litter,5,6 airplane wreck-
age,7,8 tsunami debris,9,10 sea-ice pieces,11 larvae,12,13 and oil14,15 and
to better interpreting “Lagrangian” observations in the ocean.16,17 At
present, largely piecemeal, ad hoc approaches are taken to simulate

the effects of ocean currents and winds on the drift of floating
objects. A systematic approach ideally found on the first principles
is needed. In an effort to building one, several experiments involv-
ing the deployment and subsequent satellite tracking of specially
designed drifting buoys of various sizes, buoyancies, and shapes were
carried out in the North Atlantic.

In this work, we report the results of the first experiment in
the Florida Current. The drifters were deployed at once in coinci-
dental position, off the southeast coast of the Florida Peninsula. The
differences in their trajectories are explained here as resulting from
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inertial effects, i.e., those due to the buoyancy and finite size of the
drifters, which prevent them from instantaneously adjusting their
velocities to changes in the carrying ocean current and wind fields.
This is done by making use of a recently proposed framework for
surface ocean inertial particle motion,18 which is derived from the
Maxey–Riley set,19 the de-jure framework for the study of inertial
particle dynamics in fluid mechanics.20–22

The standard Maxey–Riley set19 is a classical mechanics sec-
ond Newton’s law that approximates the motion of inertial particles
immersed in a fluid in motion. As such, it is given in the form of an
ordinary differential equation rather than a partial differential equa-
tion that would result from the exact formulation of the motion,
which involves solving the Navier–Stokes equation with a mov-
ing boundary. The latter is a formidable task which would hardly
provide as much insight as the analysis of an ordinary differential
equation can provide.

The type of insight that the analysis of the Maxey–Riley set
can lead to includes a foundation for realizing that the motion
of neutrally buoyant particles should not synchronize with that
of fluid particles, irrespective of how small.23–25 Additional insight
includes that which followed from earlier geophysical adaptions
of the Maxey–Riley set, to wit, the possible role of mesoscale
eddies as attractors of inertial particles26,27 and the tendency of
the latter to develop large patches in the centers of the subtropical
gyres.17

It is important to stress that the Maxey–Riley modeling frame-
work for inertial particle motion on the ocean surface18 is quite
different from the so-called leeway modeling approach of search-
and-rescue applications at sea.28 In such an approach, widely used
for its simplicity,7,29,30 windage effects on objects are modeled by
using a velocity resulting from the addition of a small fraction of
the wind field, established in an ad hoc manner, to the surface ocean
velocity.

The rest of this paper is organized as follows: Section II
describes the field experiment. The Maxey–Riley set for inertial
ocean particle dynamics derived by Beron-Vera, Olascoaga, and
Miron18 is presented in Sec. III (with details deferred to the
Appendix) and clarified in Sec. IV with respect to the nature of the
carrying flow, its domain of validity, and parameter specification.
Section V describes the application of the Maxey–Riley framework
to explain the behavior of each drifter type during the field experi-
ment. Finally, Sec. VI offers a summary and the conclusions of this
paper.

II. THE FIELD EXPERIMENT
The field experiment consisted in deploying simultaneously

objects of varied sizes, buoyancies, and shapes on 7 December 2017
at 79.88○ W, 25.74○ N, situated off the southeastern Florida Penin-
sula in the Florida Current, and subsequently tracking them via a
satellite. These buoys will be referred to as special drifters to dis-
tinguish them from other more standardized drifter designs such as
those from the Global Drifter Program (GDP). The special drifters
were designed at the National Oceanic and Atmospheric Adminis-
tration’s Atlantic Oceanographic and Meteorological Laboratory for
this experiment.

Four types of special drifters were involved in the experi-
ment. Three of them were comprised of a main body, made of

Styrofoam, and a small, few-centimeter-long weighted drogue at
the bottom to ensure that a SPOT® trace Global Positioning Sys-
tem (GPS) tracker was maintained above the sea level. This tracker
transmitted positions every 6 h. The main bodies of these spe-
cial drifters represented a sphere of radius 12 cm, approximately,
a cube of about 25 cm side, and a cuboid of approximate dimen-
sions 30 cm × 30 cm × 10 cm. These special drifters were sub-
merged below the sea level by roughly 10 cm, 6.5 cm, and 5 cm,
respectively. The fourth special drifter, made of plastic, was designed
to mimic a macroalgal mat, such as a Sargassum mat. The GPS
tracker was collocated inside a small Styrofoam cone embedded
in the mat. The maximal area spanned by the plastic mat was of
about 250 cm × 50 cm and had a thickness of nearly 2 cm. It
floated on the surface with the majority of its body slightly above the
surface.

In this paper, we focus on the analysis of the first week of tra-
jectory records. There are two reasons for restricting to this period
of time. First, the cube stopped transmitting position after one week.
Thus, extending the period of analysis beyond one week will shrink
the space of parameters for exploration. Second, the special drifters
tend to absorb water. This results in a change in their initial buoy-
ancy over time and thus in their response to ocean current and wind
drag. In the absence of empirical evidence, simulating this response
will require one to propose some model for the time variation of
the buoyancy, which we avoid to reduce uncertainties. With this
in mind, we note that the special drifters were affected by a strong
wind event that took place between 2 days and 3 days after deploy-
ment (Fig. 1, top). This wind event unevenly impacted the trajec-
tories, suggesting the dominance of inertial effects. Furthermore,
even prior to the anomalous wind event, the velocity of the special
drifters was not uniform across them (Fig. 1, bottom), suggesting an
uneven response of their motion to the ocean currents as well. This
reinforces the idea that inertial effects dominated the motion of the
special drifters.

Indeed, surface velocities alone cannot explain the different tra-
jectories described by the special drifters, as is shown in the left panel
of Fig. 2. The dashed curve in this figure is the trajectory that results
from integrating a surface velocity representation starting from the
deployment site and time. The thin curves are the various special
drifter trajectories. The surface velocity corresponds to a synthe-
sis of geostrophic flow derived from multisatellite altimetry mea-
surements31 and Ekman drift induced by wind from reanalysis,32

combined to minimize differences with velocities of GDP drifters
drogued at 15 m.16

Moreover, a leeway velocity model is not capable of repre-
senting the variety of trajectories produced by the special drifters
with a single windage strength choice. Several windage levels must
be considered depending on the special drifter. This is insinu-
ated in the right panel of Fig. 2, which shows (in dashed) tra-
jectories resulting from integrating leeway velocities constructed
by adding to the above surface velocity synthesis small frac-
tions of the reanalyzed wind field involved in the synthesis. The
windage levels are in the widely used ad hoc range 1%–5%.7,29,30

Which level best suits a given special drifter cannot be assessed
a priori. The Maxey–Riley theory of Beron-Vera, Olascoaga, and
Miron18 provides means for resolving this uncertainty by explic-
itly accounting for the effects of the inertia of the drifters on their
motion.
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FIG. 1. (Top) Satellite-tracked trajectories of the special
drifters with colors indicating time since deployment (left)
and zonal (i.e., west-to-east) wind intensity (right). (Bottom)
Zonal velocity of the special drifters as a function of time
from deployment to the instant when the zonal wind speed
reached its first peak.

FIG. 2. (Left) Trajectories of the special drifters (thin) and trajectories resulting from
integrating a surface ocean current synthesis of altimetry-derived geostrophic flow,
wind-induced Ekman drift, and drogued drifter velocities (dashed). (Right) As in
the left panel, but with dashed curves resulting from integrating leeway velocities
constructed by adding to the altimetry/wind/drifter velocity synthesis small fractions
(from top to bottom 1%, 3%, and 5%) of wind velocity.

III. THE MAXEY–RILEY FRAMEWORK

Consider a stack of two homogeneous fluid layers. The fluid
in the bottom layer represents the ocean water and has density ρ.
The top-layer fluid is much lighter, representing the air; its density
is ρa ≪ ρ. Let μ and μa stand for dynamic viscosities of water and
air, respectively. The water and air velocities vary in horizontal posi-
tion and time and are denoted as v(x, t) and va(x, t), respectively,
where x = (x1, x2) denotes the Cartesian33 position with x1 (respec-
tively, x2) pointing eastward (respectively, northward) and t is the
time. This configuration is susceptible to (Kelvin–Helmholtz) insta-
bility,34 which is ignored assuming that the air–sea interface remains
horizontal at all times. In other words, any wave-induced Stokes
drift35 is accounted for implicitly, and admittedly only partially, by
absorbing its effects in the water velocity v (e.g., assuming that this is
produced by a coupled ocean–wave–atmosphere model). Consider
finally a solid spherical particle, of radius a and density ρp, floating
at the air–sea interface. Define18

δ ∶=
ρ
ρp
≥ 1. (1)

Under certain conditions, clarified in Sec. IV B, δ−1 approximates
well the fraction of particle volume submerged in the water.17,18 For
future reference, consider the following parameters depending on
the inertial particle buoyancy δ:
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Φ ∶=
i
√

3
2
(

1
φ
− φ) −

1
2φ
−
φ
2

+ 1, (2)

where

φ ∶= 3
√

i
√

1 − (2δ−1 − 1)2 + 2δ−1 − 1. (3)

Nominally ranging in the interval [0, 2), Φ allows one to evalu-
ate the height (respectively, depth) of the emerged (respectively,
submerged) spherical cap as Φa [respectively, (2 − Φ)a].18 Finally,

Ψ ∶= π−1 cos−1
(1 −Φ) − π−1

(1 −Φ)
√

1 − (1 −Φ)2, (4)

which nominally ranges in [0, 1) and gives the emerged (respectively,
submerged) particle’s projected (in the flow direction) area as πΨa2

[respectively, π(1 − Ψ)a2].18

A. The full set
The Maxey–Riley set19,36,37 includes several forcing terms that

describe the motion of solid spherical particles immersed in the
unsteady nonuniform flow of a homogeneous viscous fluid. These
terms are the flow force exerted on the particle by the undis-
turbed fluid; the added mass force resulting from part of the fluid
moving with the particle; and the drag force caused by the fluid
viscosity.

Vertically integrating across the particle’s extent the Maxey–
Riley set, enriched by further including the lift force,38 which arises
when the particle rotates as it moves in a (horizontally) sheared
flow,39 and the Coriolis force,17,26,27 which is the only percepti-
ble effect of the planet’s rotation in the x-frame (as it has the
local vertical sufficiently tilted toward the nearest pole to coun-
terbalance the centrifugal force40), Beron-Vera et al.18 obtained
the following Maxey–Riley set for surface ocean inertial particle
motion:

v̇p + (f +
1
3

Rω)v⊥p + τ−1vp = R
Dv

Dt
+ R(f +

1
3
ω)v⊥ + τ−1u, (5)

where

u ∶= (1 − α)v + αva. (6)

In (5), vp is the velocity of the inertial particle and v̇p is its
acceleration; f = f0 + βx2 is the Coriolis parameter; ω = −∇ ⋅ v�

= ∂1v
2
− ∂2v

1 is the (the vertical component of the) water’s vorticity;
D

Dt v = ∂tv + (∇v)v = ∂tv + (∂1v)v
1 + (∂2v)v

2 is the total derivative
of the water velocity along an ocean water particle trajectory; and
parameters

R :=
1 − 1

2Φ
1 − 1

6Φ
∈ [0, 1) (7)

and

τ ∶= K ⋅
1 − 1

6Φ
3(k−1(1 −Ψ) + γk−1

a Ψ)δ
⋅

a2

μ/ρ
> 0, (8)

which measure the inertial response time of the medium to the
particle. The nominal range of τ values is clarified in Sec. IV B.
In (8),

γ ∶=
μa

μ
> 0, (9)

parameter k > 0 (respectively, ka > 0) determines the projected
length scale of the submerged (respectively, emerged) inertial parti-
cle piece upon multiplication by the immersion (respectively, emer-
sion) depth (respectively, height) and 0 < K ≤ 1 is a correction fac-
tor that accounts for the effects of particle’s shape deviating from
spherical, satisfying41

K−1
=

1
3

an

av
+

2
3

as

av
. (10)

Here an, as, and av are the radii of the sphere with the equivalent pro-
jected area, surface area, and equivalent volume, respectively, whose
average provides an appropriate choice for a. Finally, in (6),

α ∶=
γk−1

a Ψ
k−1(1 −Ψ) + γk−1

a Ψ
. (11)

Since 0 ≤ α < 1, nominally, the convex combination (6) represents a
weighted average of water and air velocities.

B. Slow manifold approximation
Set (5) represents a nonautonomous four-dimensional dynam-

ical system in position (x) and velocity (vp). A two-dimensional
system in x, which does not require specification of initial velocity
for resolution, can be derived by noting that (5) is valid for suffi-
ciently small particles or, equivalently, the inertial response time τ
is short enough. More specifically, (5) involves both slow (position)
and fast (velocity) variables, which makes it a singular perturbation
problem. This enables one to apply geometric singular perturbation
analysis42,43 extended to the nonautonomous case44 to obtain18

ẋ = vp = u + τuτ (12)

+O(τ2) as τ → 0, where

uτ ∶= R
Dv

Dt
+ R(f +

1
3
ω)v⊥ −

Du
Dt
− (f +

1
3

Rω)u⊥, (13)

with D
Dt u being the total derivative of u, defined in (6), along a

trajectory of u.
The reduced set (12) controls the evolution of the full set (5) on

the manifold

Mτ ∶= {(x, vp, t) : vp = u(x, t) + τuτ(x, t)}, (14)

which is referred to as a slow manifold because (5) is restricted to
Mτ , i.e., (12) represents a slowly varying system (Fig. 3). Invariant
up to trajectories leaving it through its boundary, and unique up to
an error of O(e−1/τ)≪ O(τ),42 Mτ normally attracts all solutions of
the τ → 0 limit of (5) exponentially fast. The only caveat44 is that
rapid changes in the carrying flow velocity, represented by u, can
turn the exponentially dominated convergence of solutions on Mτ
not necessarily monotonic over finite time.

IV. CLARIFICATION OF THE MAXEY–RILEY SET
A. Critical manifold

The τ = 0 limit of (5) with t rescaled by τ−1 to form a fast time
scale has a large set of fixed points, which, given by vp = u, entirely fill
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FIG. 3. Geometry of the Maxey–Riley set (5) dynamics in the extended phase
space. Unique up to an error of O(e−1/τ )≪ O(τ), the locally invariant slow man-
ifold Mτ (14) normally attracts all solutions of the Maxey–Riley set when τ > 0 is
small but exponentially fast. This lies O(τ)-close to the critical manifold M0. For
the fast dynamics, i.e., with t rescaled by τ−1, M0 is filled with fixed points, while
for the slow dynamics, i.e., with t unscaled, motion on M0 is nontrivial, evolving
according to the buoyancy-weighted average of water and air velocities u (6). Yet,
motion off M0 is not controlled by the dynamics on it.

M0, called the critical manifold. Motion on M0 is, thus, trivial for the
τ = 0 limit of the fast form of (5). The τ = 0 limit of the slow form of
(5), i.e., with t unscaled, blows this motion up to produce nontrivial
behavior on M0, yet leaving the motion undetermined off M0, which
is controlled by Mτ when τ > 0 is small.

The idea that the motion on M0 is trivial43 must be understood
in the specific dynamical systems’ sense above and should not be
confused with implying that ẋ = u cannot support rich dynamics.
Clearly, rich dynamics can even be supported by the carrying veloc-
ity in the original Maxey–Riley model setting with a single fluid and
a finite-size particle either heavier or lighter than the fluid. Yet in
that case, the interest lies in the potentially much richer dynamics22

that inertial effects may produce. The situation is different in the
present case, wherein the carrying flow (u) depends on the buoy-
ancy of the particle, cf. (6), and thus has inertial effects built in.
Indeed, u is not given a priori as in the standard fluid mechanics set-
ting.22 Rather, it follows from vertically integrating the drag force.18

In other words, inertial effects are felt by the particle even when
τ = 0. It turns out, as we will show below, that ẋ = u describes the tra-
jectories of the special drifters over the period analyzed reasonably
well.

It is important to realize that ẋ = u is quite different than—and
thus should not be confused with—a leeway model, i.e., one of the
forms ẋ = v + εva, where ε > 0 is small. The leeway factor ε is, as
noted above, commonly chosen in an ad hoc manner to reduce dif-
ferences with observations.7,29,30 Yet, buoyancy-dependent models
for ε have been proposed in the literature.45,46 However, at odds with
the Maxey–Riley approach, these models are obtained by neglecting
inertia and assuming an exact cancellation between water and air
drag forces.

Clearly, one should not expect that the leading-order contribu-
tion to the reduced Maxey–Riley set (12) be sufficient to describe all
aspects of inertial particle motion in the ocean. Examples of relevant
aspects include clustering at the center of the subtropical gyres,17,18

phenomenon supported on measurements of plastic debris concen-
tration,6 and the analysis of undrogued drifter trajectories,17,18 or
the role of mesoscale eddies as attractors or repellers of inertial

particles depending on the polarity of the eddies and the buoyancy of
the particles18,26,27 despite the Lagrangian resilience of their bound-
aries,47–50 which is also backed on observations.51 The cited phe-
nomena, which act on quite different time scales, all require both
O(1) and O(τ) terms in (12) for their description17,18,26,27 consis-
tent with the slow manifold Mτ in (14) rather than the critical M0,
controlling the time-asymptotic dynamics of the τ → 0 limit of the
Maxey–Riley set (5).

B. Domain of validity
Unlike stated by Beron-Vera, Olascoaga, and Miron,18 the

domain of applicability of the Maxey–Riley set is not extensible to
all possible δ values, which nominally range in a very large interval
bounded by 1 from below. Indeed, the fraction of submerged particle
volume,18

σ =
1 − δa

δ − δa
, (15)

where

1 ≤ δ ≤
ρ
ρa
≫ 1,

ρa

ρ
≤ δa ∶=

ρa

ρp
≤ 1, (16)

as static stability (Archimedes’ principle) demands, so 0 ≤ σ ≤ 1. Note
that ρ≫ ρa implies that δ≫ δa, and as a result, σ ≈ (1 − δa)/δ, which
may be further approximated by δ−1 if δa ≪ 1. The latter does not
follow from ρ ≫ ρa, as incorrectly stated by Beron-Vera, Olasco-
aga, and Miron.18 It is an assumption which holds provided that δ
is not too large. This follows from noting that δa ≡ (ρa/ρ) ⋅ δ. Thus,
inferences made in the study of Beron-Vera, Olascoaga, and Miron18

on the behavior as δ → ∞ are not formally correct and should be
ignored. In particular, Sec. IV B in the study of Beron-Vera, Olasco-
aga, and Miron18 should be omitted and the left and middle panels
of Fig. 2 in that paper, which show α as a function of δ over a large
range, should be interpreted with the above clarification in mind. In
addition, the formal ranges of parameters Φ, Ψ, and R are smaller
than their nominal ones (stated above).

Currently underway52 is a corrigendum and addendum to the
study of Beron-Vera, Olascoaga, and Miron,18 where the correct
way to formulate the Maxey–Riley set is shown, so it is valid for
all possible buoyancy values by using, instead of δ, the exact frac-
tion of submerged volume σ, as given in (15). In the study of
Beron-Vera, Olascoaga, and Miron,52 it is shown, for instance, that
the σ → 0 (equivalently, δ →∞) limit is symmetric with respect to
the σ → 1 (equivalently, δ→ 1) limit, as can be expected. In addition,
additional terms, involving air quantities, must be included, both
in the full and reduced sets if δ is allowed to take values in its full
nominal range. It is important to note, however, that for the pur-
poses of the present work, which involves dealing with observed δ
values not exceeding 4 or so, these additional terms can be safely
neglected and thus is appropriate to use set (5) or (12) as presented
above.

C. Parameter specification
In order for the Maxey–Riley parameters to be fully determined

by the carrying fluid system properties and the inertial particle’s
characteristics, the projected length factors, k and ka, must first be
specified. These should depend on how much the sphere is exposed
to the air or immersed in the water to account for the effect of the
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air–sea interface (boundary) on the determination of the drag. With
this in mind, we make the following proposition:

k = ka = δ−r , r > 0. (17)

Making k = ka guarantees the leeway factor α in (11) to grow with
δ. This assures the air component of the carrying flow field to dom-
inate over the water component as the particle gets exposed to the
air. This is consistent with making k = ka to decay with δ as this
guarantees the inertial response time τ in (8) to shorten as the
particle gets exposed to the air. Indeed, ignoring boundary effects,
for a spherical particle that is completely immersed in the water,
τ = a2ρ/3μ,18,25 while τ = a2ρa/3μa ≡ (ρa/ργ) ⋅ (a2ρ/3μ) if the particle
is fully exposed to the air. Using mean density values ρ= 1025 kg
m−3 and ρa = 1.2 kg m−3, and mean dynamic viscosity values
μ = 0.001 kg m−1 s−1 and μa = 1.8 × 10−5 kg m−1 s−1, the lower
bound on τ is approximately 0.05 ⋅ (a2ρ/3μ). Clearly, with k = ka
depending on δ as in (17), limδ→∞τ = 0. However, this limit, as
clarified above, is outside the domain of validity of the Maxey–Riley
set (5) or its reduced form (12). It turns out that what really mat-
ters once the theory is confronted with observations is that (17)
makes τ to decay at a faster rate with increasing δ than k = ka = 1,
which corresponds to setting the projected length of the submerged
(respectively, emerged) particle piece to be equal to the submerged
depth (respectively, emerged height). In fact, below, we show that
r ≈ 3 best fits observations. In the study of Beron-Vera, Olas-
coaga, and Miron,52 we will report on the results aimed at pro-
viding a stronger foundation for (17) based on direct numerical
simulations of low-Reynolds-number flow around a spherical cap
of different heights. To the best of our knowledge, a drag coef-
ficient formula for this specific setup is lacking. An important
aspect that these simulations, in progress at the time of writing, will
account for is the effect of the boundary on which the spherical
cap rests on, which may lead to changes to the bounds on τ noted
above.

V. USING THE MAXEY–RILEY FRAMEWORK TO
EXPLAIN THE BEHAVIOR OF THE SPECIAL DRIFTERS

Table I shows our estimates for the parameters that charac-
terize the special drifters as inertial particles evolving according to
the Maxey–Riley set, in its full (5) or reduced (12) version. These
are classified into primary parameters (a, K, and δ) and secondary
parameters (α, R, and τ), which are derived from the primary
parameters.

The radius a and shape correction factor K follow from each
special drifter’s dimension and shape specification. In computing
the buoyancy δ, we relied on the estimate of the immersion depth
(h) for each special drifter at the Rosenstiel School of Marine and
Atmospheric Science’s pier in Virginia Key [recall (2) and that Φ(δ)
= 2 − h/a, which specifies δ]. This estimate does not account for any
change in density from the coast to the deployment site. In addi-
tion, the density changes along the special drifter trajectories, which
is ignored in the analysis. As one may fairly suspect, our estimates
for the mat’s parameters are the most affected by uncertainty due to
the configuration of this special drifter, which is not a solid object as
the other three.

The values of α and R are obtained from (11) and (7), respec-
tively, assuming (17) and viscosities set to typical values (μ = 0.001 kg

TABLE I. Parameters that characterize the special drifters as inertial particles.

Parameter

Primary Secondary

Special drifter a (cm) K δ α R τ (d−1)

Sphere 12 1 2.7 0.027 0.51 0.002
Cube 16 0.96 4 0.042 0.42 0.001
Cuboid 13 0.95 2.5 0.024 0.53 0.003
Mat 26 0.53 1.25 0.005 0.79 0.031

m−1 s−1 and μa = 1.8 × 10−5 kg m−1 s−1). Determining τ from (8)
requires one to specify of the density of the water (for which, we
used ρ = 1025 kg m3) and the exponent r in (17), which is done as
follows.

Let V and L be typical velocity and length scales, respectively.
With these, one can form a nondimensional inertial response time,18

τ
L/V

=
K(1 − 1

6Φ)
3(k−1(1 −Ψ) + γk−1

a Ψ)δ
⋅ St, (18)

where

St ∶= (
a
L
)

2
Re, Re ∶=

VL
μ/ρ

(19)

are the Stokes and Reynolds numbers, respectively. An appropri-
ate velocity scale is such that v = O(V), while va = O(V/α). This
makes sense provided that α is small, which is satisfied for the special
drifters. Taking V = 1 m s−1, typical at the axis of the Florida Cur-
rent, and L = 50 km, a rough measure of the width of the current,
one obtains that St is order unity at most for the special drifters.
Assuming that they are spherical so that K = 1, i.e., K equals the
upper bound, the nondimensional inertial response time (18) is less
than unity. This makes using the Maxey–Riley set to investigate the
special drifters’ motion defensible and further suggests that such a
motion can be expected to lie close to its slow manifold if r > 1
in (17).

We have estimated the inertial response time τ that minimizes
the square of the difference between the observed special drifter tra-
jectories and trajectories described by the Maxey–Riley set (5). The
result of this optimization is presented in Fig. 4, which shows the
estimated τ values (circles) as a function of special drifter buoyancy
(δ). The curve is the best fit to a particular τ model in a least-squares
sense to the optimized τ values. The τ model has one fitting coef-
ficient given by the exponent (r) in the model proposed for the
projected lengths (17), namely,

3μ
Ka2ρ

⋅ τ(δ) =
1 − 1

6Φ(δ)
1 + (γ − 1)Ψ(δ)

⋅ δ−r−1. (20)

Minimization of the square of the residuals gives r = 2.94 with a small
one-standard deviation uncertainty (0.03) related exclusively to the
goodness of the fit.53 The optimal values of τ, which are not different
than those resulting using (20) with r = 3, are listed in Table I.
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FIG. 4. Optimal inertial response time as a function of special drifter buoyancy
(circles) and least-squares fit of model (20).

With all Maxey–Riley parameters now set, we can proceed to
analyze the trajectories of the special drifters. In Fig. 5, we depict
special drifter (from left to right: mat, cuboid, sphere, and cube) tra-
jectories along with trajectories (thin solid) resulting by integrating
the full Maxey–Riley set (5) (bold solid), trajectories produced by
the reduced Maxey–Riley set (12) (dotted–dashed, nearly indistin-
guishable from bold solid), and trajectories resulting by integrating
the latter with τ = 0 (dashed). [All integrations in this paper are car-
ried out using a time-step-adapting fourth/fifth-order Runge–Kutta
(the Dormand–Prince54 pair) scheme as implemented in MATLAB®

with interpolations (in space and time) done using a cubic method.]
The surface ocean velocity synthesis discussed in Sec. II is used to
represent the water velocity (v) involved in each of the correspond-
ing dynamical systems, while the air velocity (va) is specified using
the reanalyzed wind data involved in that synthesis. The initial veloc-
ities required to integrate the full Maxey–Riley set are taken to be
equal to the velocities of the various drifters as obtained from dif-
ferentiating their trajectories in time. Several observations are in
order.

First and foremost is the overall improved agreement between
special drifter trajectories and Maxey–Riley trajectories relative to
those resulting from integrating v and the leeway model v + εva with
ε = 0.03 (cf. Fig. 2). Indeed, the Maxey–Riley trajectories capture well
both the drift of the mat, predominantly along the Florida Current,
and the eastward turn unevenly experienced by the cuboid, sphere,
and cube. The leeway model trajectories cannot represent the latter
with, as we note below, a single leeway factor (ε) choice, and the tra-
jectories of v mainly represent the passive drift of ocean water along
the Florida Current.

A second observation that follows from the inspection of Fig. 5
is that full Maxey–Riley trajectories coincide, virtually, with reduced
Maxey–Riley trajectories. This indicates that convergence on the
slow manifold is very fast. Consistent with this is the tendency of
the Maxey–Riley trajectories to lie close, particularly in the case
of the sphere and the cube, to those produced by the reduced
Maxey–Riley set with τ = 0. This by no means implies that the
special drifters are not affected by inertia. Quite to the contrary,
as we have clarified, u depends on buoyancy and thus has iner-
tial effects incorporated. This explains why a single choice of lee-
way factor ε was not sufficient to explain the uneven effect of the
ocean current and wind on the drift of the special drifters (recall
Fig. 2).

FIG. 5. Special drifter (from left to right: mat, cuboid, sphere, and cube) trajectory (bold solid) and trajectories resulting by integrating the full Maxey–Riley set (thin solid), the
reduced Maxey–Riley set (dotted–dashed), and the latter with τ = 0 (dashed). The water velocity is taken as the surface ocean velocity synthesis in Fig. 2 and the air velocity
as the reanalyzed wind involved in the synthesis. Initial velocities to integrate the full Maxey–Riley set are taken as the velocities of the special drifters. Parameters are given
in Table I.
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An additional observation, which cannot be omitted, is that
differences between observed and Maxey–Riley trajectories, albeit
minor compared with those of the surface velocity synthesis and
the leeway model(s), are visible in Fig. 5. There are several sources
of uncertainty that contribute to produce differences between the
observed and Maxey–Riley trajectories. For instance, there are pro-
cesses acting near the surface of the ocean that are not represented
by the surface ocean flow synthesis considered here. The dominant
component in this synthesis is the altimetry-derived velocity, which
is too coarse to represent submesoscale motions and does not rep-
resent velocity shear between 15-m depth and the ocean surface. On
the other hand, the Maxey–Riley set, as formulated, can only account
for the potential contribution of wave-induced (Stokes) drift implic-
itly, by absorbing the corresponding wave-induced velocity in the
water component of the carrying flow. The flow synthesis does not
account for wave-induced motions as is constructed in such a way
to minimize differences with velocities of drogued (GDP) drifters
designed to keep the wave-induced slip to very low levels (the wind-
plus-wave-induced slip is less 1 cm s−1 in 10 m s−1 wind55). In
turn, coming from reanalysis, the near surface wind field cannot be
expected to be fully represented. There is also uncertainty around
the determination of the buoyancy of the special drifters, which
can vary along a trajectory, and this affects its determination even
further.

Assessing the effects of the uncertainty around the determi-
nation of the carrying flow field is not feasible. Yet, we can, at
least roughly, estimate those produced by that around the deter-
mination of the buoyancy of the special drifters. The result is pre-
sented in Fig. 6, in which trajectories (in solid) overlaid on the
area spanned by Maxey–Riley trajectories (shaded bands) result-
ing from allowing δ vary in an interval given by the value listed in
Table I ±10% (the dashed curve, included for reference, has δ in
the center of this interval). The width of this δ-interval accounts
very roughly for the error incurred in estimating the submerged

depth of the special drifters in near-coastal water rather than at
the deployment site in the Florida Current and possibly too any
changes in δ produced by water absorption or ambient water den-
sity variations along trajectories. Note that the special drifters and
corresponding Maxey–Riley trajectories show consistency among
over large portions to within δ-induced uncertainty. In particu-
lar, most of the sphere’s trajectories fall quite well inside the δ-
induced uncertainty band around the corresponding Maxey–Riley
trajectory. This encourages as to speculate that the buoyancy uncer-
tainty dominates the discrepancies between observed and simulated
trajectories.

It is important to realize that differences between observed
and simulated trajectories may never be completely eliminated. The
fundamental reason for this stands on the unavoidable accumu-
lation of errors and uncertainties, in addition to sensitive depen-
dence on initial conditions, in any model, irrespective of how real-
istic.56 It is very remarkable then that despite this the Maxey–
Riley set has performed so well when individual trajectories were
compared.

A quantitative assessment of the Maxey–Riley set’s skill is
finally presented in Fig. 7, which shows, as a function of buoy-
ancy (δ), the Hausdorff distance57 between observed trajectories,
xo
= {xo

i , i = 1, . . . , n}, and simulated trajectories xs = {xs(t), t ∈
[t1, tn]},

dH(xs, xo
) ∶= max

⎧⎪⎪
⎨
⎪⎪⎩

sup
xs(ti)∈xs

inf
xo

i ∈x
o

d(xs
(ti), xo

i ), sup
xo

i ∈x
o

inf
xs(ti)∈xs

d(xs
(ti), xo

i )

⎫⎪⎪
⎬
⎪⎪⎭

,

(21)

where d( , ) is the Euclidean distance. Roughly speaking, the Haus-
dorff distance is the greatest of all the smallest distances between
two curves. Note that Maxey–Riley trajectories are overall closer to
the observed trajectories than those of the standard leeway model(s)
or the buoyancy-dependent leeway models discussed in this paper.

FIG. 6. Special drifter (from left to right: mat, cuboid, sphere, and cube) trajectory (solid), Maxey–Riley trajectory with parameters as in Table I (dashed), and area spanned
by Maxey–Riley trajectories resulting by allowing the buoyancy to range in an interval given by the value listed in Table I ±10% (shaded bands).

Phys. Fluids 32, 026601 (2020); doi: 10.1063/1.5139045 32, 026601-8

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 7. As a function of buoyancy, the Hausdorff distance between observed and
simulated trajectories.

In terms of the parameters of this paper, the leeway parameter for
the leeway model of Röhrs et al.45 εR(δ) =

√
ρa/ρ/

√
Ψ(δ)−1 − 1,

while that for the leeway model of Nesterov46 εN(δ) = 1/(εR(δ)−1 + 1),
where ρa/ρ ≈ 10−3.

VI. SUMMARY AND CONCLUDING REMARKS
In this paper, we have presented the results of one of a series

of experiments aimed at investigating the mechanism by which
objects floating on the ocean surface are controlled by ocean cur-
rents and winds. The experiment consisted of deploying simultane-
ously in the same location drifting buoys of various sizes, buoyan-
cies, and shapes in the Florida Current, off the southeastern Florida
Peninsula. The specially designed drifters described different trajec-
tories, which were affected by a strong wind event within the first
week of evolution since deployment. Consistent with the uneven
response to the wind and ocean current action, the differences in
the trajectories were explained as produced by the special drifters’
inertia. This was done by applying a recently proposed Maxey–Riley
theory for inertial (i.e., buoyancy and finite-size) particle motion in
the ocean.18 Of buoyancy and finite size effects, the former were
found to make the largest contribution to the inertial effects that
controlled the special drifter motion.

The very good agreement between special drifter trajectories
and those produced by the Maxey–Riley may be found surpris-
ing given the uncertainty around the determination of the carrying
flow. Indeed, the ocean component of the flow was provided by a
synthesis dominated by altimetry-derived velocity, while the atmo-
spheric component was produced by winds from reanalysis. Both
are admittedly limited. Furthermore, the Maxey–Riley set does not
account for several potentially important aspects such as the space
and time dependence of the particle’s buoyancy or wave-induced
drift.

We note that the Maxey–Riley set is found to be similarly suc-
cessful in explaining the behavior of special drifters deployed in

other sites of the North Atlantic as part of the experiments that
complete the series. The drifters have similar characteristics to those
deployed in the Florida Current. An important difference is that
their trajectories lasted much longer than those discussed here,
resulting in a much more stringent test of the validity of the Maxey–
Riley set. A detailed analysis58 is underway and will be published
elsewhere.

Finally, we took the opportunity of this paper to clarify the
Maxey–Riley theory derived in the study of Beron-Vera, Olas-
coaga, and Miron18 with respect to the nature of the carrying
flow and its domain of validity and to propose a closure pro-
posal for the determination of the parameters involved in terms
of the carrying fluid system properties and particle characteristics.
A corrigendum and addendum52 to the study of Beron-Vera,
Olascoaga, and Miron18 is in progress. This will extend the
theory to arbitrary large objects’ buoyancies and seek to bet-
ter justify the closure proposed here by using direct numerical
simulations.
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APPENDIX: DERIVATION OF EQ. (5)
The exact motion of inertial particles obeys the Navier–Stokes

equation with moving boundaries as such particles are extended
objects in the fluid with their own boundaries. This results in com-
plicated partial differential equations, which are hard to solve and
analyze. Here as well as in the study of Beron-Vera, Olascoaga, and
Miron,18 the interest is in the approximation, formulated in terms
of an ordinary differential equation, provided by the Maxey–Riley
equation, which has become the de-jure fluid mechanics paradigm
for inertial particle dynamics.

Such an equation is a classical mechanics Newton’s second law
with several forcing terms that describe the motion of solid spherical
particles immersed in the unsteady nonuniform flow of a homo-
geneous viscous fluid. Normalized by particle mass, mp =

4
3πa3ρp,

the relevant forcing terms for the horizontal motion of a sufficiently
small particle, excluding the so-called Faxen corrections and the
Basset–Boussinesq history or memory term, are as follows:19,38,39 (1)
the flow force exerted on the particle by the undisturbed fluid,

Fflow =
mf

mp

Dvf

Dt
, (A1)

where mf =
4
3πa3ρf is the mass of the displaced fluid (of density ρf)

and Dvf
Dt is the material derivative of the fluid velocity (vf) or its total

derivative taken along the trajectory of a fluid particle, x = Xf(t), i.e.,
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Dvf
Dt = [

d
dt vf(x, t)]

x=Xf(t)
= ∂tvf + (∇vf)vf; (2) the added mass force

resulting from part of the fluid moving with the particle,

Fmass =

1
2 mf

mp
(

Dvf

Dt
− v̇p), (A2)

where v̇p is the acceleration of an inertial particle with trajectory
x = Xp(t), i.e., v̇p =

d
dt [vp(x, t)]x=Xp(t)

= ∂tvp, where vp = ∂tXp =
ẋ is the inertial particle velocity; (3) the lift force, which arises when
the particle rotates as it moves in a (horizontally) sheared flow,

Flift =

1
2 mf

mp
ωf(vf − vp)

⊥, (A3)

where ωf = ∂1v
2
f − ∂2v

1
f is the (vertical) vorticity of the fluid and

w⊥ = Jw, J ∶= (0 −1
1 0) (A4)

for any vector w in R2; and (4) the drag force caused by the fluid
viscosity,

Fdrag =
12μf

Af
ℓf

mp
(vf − vp), (A5)

where μf is the dynamic viscosity of the fluid, Af (=πa2) is the pro-
jected area of the particle, and ℓf (=2a) is the characteristic pro-
jected length, which we have intentionally left unspecified for future
appropriate evaluation.

To derive Eq. (5), Beron-Vera, Olascoaga, and Miron18 first
accounted for the geophysical nature of the fluid by including the
Coriolis force. (In an earlier geophysical adaptation of the Maxey–
Riley equation,21 the centrifugal force was included as well, but this
is actually balanced out by the gravitational force on the horizontal
plane.) This amounts to replacing (A1) and (A2) with

Fflow =
mf

mp
(

Dvf

Dt
+ f v�f ) (A6)

and

Fmass =

1
2 mf

mp
(

Dvf

Dt
+ f v�f − v̇p − f v�p ), (A7)

respectively.
Then, noting that fluid variables and parameters take different

values when pertaining to seawater or air, e.g.,

vf(x, z, t) = {
va(x, t) if z ∈ (0, ha],
v(x, t) if z ∈ [−h, 0),

(A8)

Beron-Vera, Olascoaga, and Miron18 wrote

v̇p + f v⊥p = ⟨Fflow⟩ + ⟨Fmass⟩ + ⟨Flift⟩ + ⟨Fdrag⟩, (A9)

where ⟨ ⟩ is an average over z ∈ [−h, ha]. After some algebraic manip-
ulation, Eq. (5) follows upon making ℓ = kh and ℓa = kaha and
assuming δa ≪ 1 with the comments in Sec. IV in mind.
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